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We present a methodology for computing efficiently scattered fields in a frequency
band. The main feature of this methodology is the construction of a series of discrete
problems that differ only by their right-hand sides, rather than by both their left-
and right-hand sides. Its key steps are (a) the reformulation of the acoustic scattering
problem in a bounded domain using any preferred absorbing boundary condition,
(b) the characterization of the repeated derivatives with respect to the frequency of the
scattered field as solutions of scattering-type problems with different source terms
and boundary conditions, and (c) the reconstruction of a scattered field by either
the Pad´e approximants or Wynn’s algorithm. We report on several multifrequency
acoustic scattering examples that illustrate the accuracy and computational efficiency
of the proposed solution methodology.c© 2001 Academic Press
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1. INTRODUCTION

The straightforward solution of acoustic scattering problems [1] with multiple frequencies
leads to the solution of a set of linear systems of equations with differentleft- and right-hand
sides, regardless of the method chosen for discretizing the governing exterior Helmholtz
problem [2–5]. At relatively high frequencies, each of these systems of equations can be
sufficiently large to overwhelm some of the largest computing resources that are currently
available. The solution of such multiple systems of equations by a direct method requires
the factorization of a number of matrices equal to the number of specified frequencies, and
therefore leaves little room for reducing the CPU time. On the other hand, a few techniques
have been developed for maximizing the computational efficiency of iterative schemes
applied to the solution of a set ofnear-byproblems (for example, see [6, 7]), but few if
any significant successes have been published in the literature for the particular case of the
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Helmholtz problem. For this reason, we present in this paper an alternative approach for
solving efficiently multifrequency acoustic scattering problems.

Our main idea is to construct a solution methodology that leads to the solution of a system
of equations with multipleright-hand sides, rather than multiple systems of equations that
differ by both their left- and right-hand sides. Indeed, the solution by a direct method of a
system of equations with multiple right-hand sides is computationally efficient: the matrix
of the system needs be factored only once, and the sought-after solutions are obtained by
relatively inexpensive forward and backward substitutions. Furthermore, several iterative
algorithms such as block GMRES [8], block QMR [9], and FETI-H [10, 11] have already
been tuned for the solution of systems equations with multiple right-hand sides, and have
demonstrated computational efficiency in the context of Helmholtz problems.

The key step of our methodology is the characterization of the first and higher derivatives
of the scattered field with respect to the frequency as the solutions of a Helmholtz problem
with different source terms and boundary conditions. However, the fact that we can establish
this characterization only when the target acoustic scattering problem is formulated in a
bounded domain using any absorbing boundary condition [12–16] sets the scope of this
paper to such discretization methods of the exterior Helmholtz problem.

For the sake of clarity, we describe our solution methodology first in the context of
guided wave problems. Then, we extend it to acoustic scattering problems. In both cases,
we illustrate this methodology with several two-dimensional numerical examples that high-
light its potential for reducing significantly the CPU time associated with the solution of
multifrequency time-harmonic wave problems.

2. NOMENCLATURE AND ASSUMPTIONS

Throughout this paper, we adopt the following nomenclature and assumptions

• Ä is a bounded domain ofRd(d = 2, 3) representing an impenetrable obstacle.
• Äe = Rd\Ǟ is the homogeneous isotropic medium inRd where the obstacle is em-

bedded.
• Äe

b denotes the computational domain.
• 0 is the boundary ofÄe and is assumed to be Lipschitzian.
• 6 is the fictitious boundary, that is, the boundary ofÄe

b; it is assumed to be Lipschitzian.
• s is the curvilinear abscissa.
• ζ is the curvature (in two dimensions) of the artificial boundary6.
• x is a point ofRd, andr = ‖x‖2 is the distance from the origin point tox.
• S1 = {x ∈ Rd/‖x‖2 = 1} is the unit sphere inRd.
• ∇ is the gradient operator inRd.
• 1 is the Laplacian operator inRd.
• ν is the outward normal to0, and ∂

∂ν
is the normal derivative operator.

• k is a positive number representing the wavenumber of the incident wave.
• λ = 2π

k is a positive number representing the wavelength.
• u(k) = u(k; x) for x ∈ Rd.
• d is a vector of the unit sphereS1 representing the direction of the incident plane

wave.
• u(n)(k) is then-th derivative ofu(k) with respect tok, i.e.,u(n)(k) = ∂nu(k)

∂kn .
• L2 andH1 are the standard Sobolev spaces [17].
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• H1
loc(Ä

e) is the space of functions that belong toH1(D) for any open-bounded setD
in Äe [17].

3. THE WAVEGUIDE MODEL PROBLEM

3.1. Mathematical Formulation

In this section, we consider the waveguide model problem graphically depicted in Fig. 1,
and mathematically formulated as

Findu(k) ∈ H1(Ä) such that

1u(k)+ k2u(k) = 0 inÄ

u(k) = 1 on01 (1)

∂u(k)

∂ν
= 0 on03 ∪ 04

∂u(k)

∂ν
− iku(k) = 0 on02,

where0 = ⋃4
j=10 j is the boundary of the waveguide, andi is the pure imaginary number

satisfyingi 2 = −1.
The exact solution of the boundary value problem (BVP) (1) is

uex(k) = eikx1 in Ä. (2)

Hence,uex(k) is an analytic function ofk ∈ R whose Taylor’s expansion with respect tok
can be written as

u(k) =
∞∑

n=0

(k− k0)
n

n!
u(n)(k0).

Next, we characterize the derivatives(u(n)(k))n∈N.

FIG. 1. A waveguide model problem.
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3.2. Characterization of the Derivatives u(n)(k)

Let

vn(k) = u(n)(k)

n!
n ∈ N∗

v0(k) = u(k) (3)

v−1(k) = 0.

From the differentiation of the BVP(1) with respect tok, it follows that forn ≥ 1

1vn(k)+ k2vn(k) = −2kvn−1(k)− vn−2(k) in Ä

vn(k) = 0 on01

∂vn(k)

∂ν
= 0 on03 ∪ 04

∂vn(k)

∂ν
− ikvn(k) = i vn−1(k) on02,

(4)

which shows that the members of the sequence(vn(k))n∈N∗ are the solutions of BVPs
that differ only by their source terms and one of the boundary conditions, that is, by their
right-hand sides after discretization. This characterization suggests that, in principle, the
following method for computingu(k) for different values ofk ∈ R is an efficient one:

Step 1. Compute the sequence(vn(k0))n∈N for a focal wavenumberk0.
Step 2. For each wavenumber of interestk 6= k0, deduceu(k) from Taylor’s expansion

u(k) =
∞∑

n=0

(1k)nvn(k0) (5)

where

1k = k− k0.

In practice, the Taylor expansion (5) must be truncated, which raises the issue of the interval
of convergence of thenumericalalgorithm chosen for evaluating this sum.

The two-step solution method summarized above is, in principle, computationally effi-
cient because, once the BVP (1) is discretized—for example, by a finite element method—
each discrete solution vectorvn(k0) corresponding tovn(k0) is obtained by solving(

K − k2
0M − ik0S

)
vn(k0) = fn n ∈ N, (6)

whereK andM are the standard stiffness and mass matrices, respectively, andS is the
mass-like matrix associated with the discretization of the boundary condition specified on
02. The vectorf0 is dictated by the Dirichlet boundary condition of the BVP (1), and all
subsequentfn vectors are given by

fn = 2k0Mvn−1(k0)+Mvn−2(k0)+ i Svn−1(k0) n ≥ 1. (7)

Hence, the sequence of vectorsvn(k0) is the solution of a system of equations with multiple
right-hand sides. As stated earlier, such a system of equations can be solved efficiently by
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either direct or iterative methods. As for the expansion (5), we report next on its evaluation by
the Pad´e approximants [18], and Wynn’s algorithm which is also known as theε-algorithm
[19, 20].

3.3. Numerical Examples

Here, we consider a configuration of the waveguide shown in Fig. 1, whereÄ is ana×a
squared domain. We focus on three frequency bandsB(k0a) centered around three different
frequencies corresponding tok0a= 6,k0a= 10, andk0a= 24. For each frequency band, we
discretize the computational domain bya/hk0 ×a/hk0 Q1 finite elements, wherehk0 is de-
termined so that all the frequencies inB(k0a) are well resolved by thea/hk0 ×a/hk0 mesh.

For each focal wavenumberk0, we first solve Eqs. (6) and (7) to determine a certain
sequence of vectorsvn(k0). Then, we construct for various values ofk = k0+1k, ka ∈
B(k0a), the solutionsu(k) by applying to Eq. (5) a Pad´e approximant [L ,M ](L +M + 1
terms; see Appendix A) and Wynn’s approximation(En

p) of order(n, p) (vector version,
n+ p+ 1 terms; see Appendix B). In order to justify the usage of these two approximation
methods, we also attempt to construct the solutionsu(k) by computing directlyN terms of
the Taylor series described in Eq. (5). We monitor the accuracy of all three approaches by
computing for each of them and each wavenumberk the relative error inÄdefined as follows

e(k) = ‖u(k)− uex(k)‖L2(Ä)

‖uex(k)‖L2(Ä)

. (8)

Furthermore, for each wavenumberk such thatka ∈ B(k0a), we also compute a finite el-
ement “reference” solution using the mesh associated withB(k0a); that is, we solve the
system of equation

(K − k2M − ikS)u(k) = f (9)

using the mesh associated withB(k0a). We report in Tables I–III the accuracy results ob-
tained for thebestTaylor, Pad´e, and Wynn approximations, and compare them with those of
the reference solutions. We use the acronymDIV to indicate that a specific approximation
method diverges for the desired1k.

The following observations are noteworthy:

• For all three values of the wavenumberk0, the Pad´e approximants and Wynn’s algorithm
improve the interval of convergence of the Taylor series by a factor ranging between 3 and 4.
• The Pad´e approximants and Wynn’s algorithm appear to possess similar intervals of

convergence and deliver comparable accuracy.
• For k0a = 6, k0a = 10, andk0a = 24 the proposed methodology delivers either the

same accuracy as the straightforward approach (reference solutions), or reproduces the
exact solution with less than 2.5% relative error, in the frequency bandsB(6) = [1, 14],
B(10) = [2, 18], andB(24) = [17, 31], respectively.
• Twenty-three terms at most are needed for the Pad´e or Wynn approximations to recon-

struct the solutionsu(k) in the relatively large frequency bands identified above. This means
that the main computational cost associated with sweeping on the frequency in these bands
is that associated with the solution of a system of equations with 23 right-hand sides. Given
that such a system can be solved efficiently by either a direct or smart iterative algorithm,
the results reported in Tables I–III illustrate the potential of the proposed methodology for
solving efficiently multifrequency time-harmonic wave problems.
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TABLE I

Accuracy Results for a Waveguide Problem and a Square-Shaped

Geometry—k0a = 6; hk0 = a/50

Taylor Taylor Pad´e Padé Wynn Wynn Reference

1ka
λ

hk0

N e(k) [L ,M ] e(k) (n, p) e(k) e(k)

0 52.3 0.0023

−5 314.0 DIV DIV [8, 8] 0.0023 (0, 16) 0.0023 1.8e-05
−4 157.0 DIV DIV [5, 5] 0.0020 (0, 10) 0.0010 0.0001
−3 104.7 25 0.0025 [5, 5] 0.0018 (0, 10) 0.0017 0.0003

3 34.9 22 0.0059 [6, 6] 0.0079 (0, 12) 0.0079 0.0075
4 31.4 DIV DIV [7, 7] 0.0098 (0, 12) 0.0096 0.0090
5 28.5 DIV DIV [7, 7] 0.0143 (0, 12) 0.0124 0.0128
6 26.2 DIV DIV [7, 7] 0.0181 (0, 14) 0.0181 0.0176
7 24.7 DIV DIV [11, 11] 0.0227 (0, 24) 0.0209 0.0203
8 22.4 DIV DIV [11, 11] 0.0368 (0, 26) 0.0278 0.0258
9 20.9 DIV DIV [14, 14] 0.0755 (0, 26) 0.0356 0.0339

10 19.6 DIV DIV [18, 18] 0.1798 (0, 32) 0.0395 0.0384
11 18.5 DIV DIV DIV DIV (0, 32) 0.0421 0.0454
12 17.4 DIV DIV DIV DIV (0, 38) 0.0610 0.0577
13 16.5 DIV DIV DIV DIV (0, 30) 0.1545 0.0651

TABLE II

Accuracy Results for a Waveguide Problem and a Square-Shaped

Geometry—k0a = 10; hk0 = a/100

Taylor Taylor Pad´e Padé Wynn Wynn Reference

1ka
λ

hk0

N e(k) [L ,M ] e(k) (n, p) e(k) e(k)

0 62.8 0.0022

−9 628.0 DIV DIV [8, 8] 0.0713 (0, 16) 0.1260 2.71e-06
−8 314.0 DIV DIV [8, 8] 0.0231 (0, 16) 0.0415 3.08e-05
−7 209.3 DIV DIV [8, 8] 0.0060 (0, 16) 0.0099 7.92e-05
−6 157.0 DIV DIV [8, 8] 0.0019 (0, 10) 0.0023 0.0001
−5 125.6 DIV DIV [8, 8] 0.0013 (0, 16) 0.0013 0.0003
−4 104.7 DIV DIV [8, 8] 0.0012 (0, 14) 0.0012 0.0005
−3 89.7 8 0.0827 [5, 5] 0.0010 (0, 10) 0.0018 0.0007

3 48.3 8 0.0084 [6, 6] 0.0051 (0, 12) 0.0051 0.0050
4 44.9 DIV DIV [6, 6] 0.0064 (0, 12) 0.0064 0.0065
5 41.9 DIV DIV [6, 6] 0.0069 (0, 12) 0.0099 0.0085
6 39.3 DIV DIV [8, 8] 0.0100 (0, 16) 0.0100 0.0096
7 36.9 DIV DIV [8, 8] 0.0124 (0, 16) 0.0144 0.0115
8 34.9 DIV DIV [8, 8] 0.0255 (0, 16) 0.0473 0.0146
9 33.1 DIV DIV [8, 8] 0.0878 (0, 16) 0.1511 0.0163

10 31.4 DIV DIV [8, 8] 0.2068 (0, 16) 0.3382 0.0186
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TABLE III

Accuracy Results for a Waveguide Problem and a Square-Shaped

Geometry—k0a = 24; hk0 = a/150

Taylor Taylor Pad´e Padé Wynn Wynn Reference

1ka
λ

hk0

N e(k) [L ,M ] e(k) (n, p) e(k) e(k)

0 39.2 0.0151

−9 62.8 DIV DIV [9, 9] 0.1131 (0, 18) 0.2012 0.0038
−8 58.8 DIV DIV [9, 9] 0.0455 (0, 18) 0.0801 0.0042
−7 55.4 DIV DIV [9, 9] 0.0157 (0, 18) 0.0242 0.0051
−6 52.3 DIV DIV [9, 9] 0.0082 (0, 18) 0.0096 0.0065
−5 49.6 DIV DIV [9, 9] 0.0076 (0, 18) 0.0078 0.0072
−4 47.1 DIV DIV [8, 8] 0.0083 (0, 18) 0.0083 0.0083
−3 44.9 6 0.0868 [3, 3] 0.0059 (0, 6) 0.0102 0.0102
−2 42.8 7 0.0062 [2, 2] 0.0082 (0, 4) 0.0092 0.0114

2 36.2 6 0.0281 [4, 4] 0.0182 (0, 8) 0.0182 0.0182
3 34.9 DIV DIV [4, 4] 0.0209 (0, 8) 0.0209 0.0213
4 33.6 DIV DIV [5, 5] 0.0221 (0, 14) 0.0237 0.0238
5 32.5 DIV DIV [7, 7] 0.0250 (0, 14) 0.0244 0.0253
6 31.4 DIV DIV [7, 7] 0.0246 (0, 14) 0.0254 0.0289
7 30.4 DIV DIV [7, 7] 0.0285 (0, 18) 0.0367 0.0324
8 29.4 DIV DIV [9, 9] 0.0539 (0, 18) 0.1190 0.0342
9 28.5 DIV DIV [9, 9] 0.1470 (0, 20) 0.2751 0.0381

4. THE SCATTERING PROBLEM

4.1. Mathematical Formulation in a Bounded Domain

Next, we consider thed-dimensional(d = 2, 3) scattering of time-harmonic acoustic
waves by an impenetrable obstacle embedded in a homogeneous medium. This problem is
governed by the BVP [1]

Findu(k) ∈ H1
loc(Ä

e) such that

1u(k)− k2u(k) = 0 in Äe

Bu = f (k) on0 (10)

lim
r→∞ r

d−1
2

(
∂u(k)

∂r
− iku(k)

)
= 0,

where

f (k) = −Beikx.d, (11)

andB is a boundary operator that characterizes the type of the scatterer [1]. More specifically,
B is a Neumann derivative operator for a sound-hard scatterer, a Dirichlet operator for a
sound-soft scatterer, and an impedance operator for a scatterer with a lossy boundary. For
simplicity but without any loss of generality, in this paper we consider the case of a sound-
hard scatterer.

As stated in the introduction, for a scattering problem, we can establish a characterization
of the derivativesu(n)(k) that is similar to that presented in Section 3.2, only when the BVP
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(10) is first reformulated in a bounded domain. Such a step is also required when the exterior
Helmholtz problem (10) is to be discretized by a domain-based method such as the finite
difference or finite element method. The definition of a bounded computational domain is
typically achieved by surrounding the scatterer by an artificial boundary positioned at a
certain distance from the surface of the scatterer. The “far-field” behavior of the scattered
field is then represented either by boundary conditions specified on the artificial boundary,
or by assumed interpolation in the complement of the computational domain. In this work,
we consider only the former approach, and more specifically nonreflecting or absorbing
boundary conditions [12–16]. Using such an approach, we reformulate the BVP (10) as

Findu(k) ∈ H1
(
Äe

b

)
such that

−1u(k)− k2u(k) = 0 inÄe
b

∂u(k)

∂ν
= f (k) on0 (12)

∂u(k)

∂ν
− M(k)u(k) = 0 on6,

whereM(k) is a differential operator, and the third of Eqs. (12) is a general representa-
tion of absorbing boundary conditions. Different approaches for constructing an absorbing
boundary condition are usually associated with different approaches for approximating the
Dirichlet-to-Neumann (DtN) operator [21, 27], and result in different expressions forM(k).
All absorbing boundary conditions share however the same objective, which is to reduce as
much as possible the reflection of waves from the artificial boundary so that the resulting
BVP (12) is well posed, and its solution is a “good” approximation of the restriction of the
solution of the BVP (10) toÄe

b.
The variational formulation of the BVP (12) goes as

Findu(k) ∈ H1
(
Äe

b

)
such that

(13)
H(u(k), v) = R(v) ∀v ∈ H1

(
Äe

b

)
,

whereH(., .) is a symmetric bilinear form defined onH1(Äe
b)× H1(Äe

b) by

H(u, v) =
∫
Äe

b

∇u · ∇v dx− k2
∫
Äe

b

uv dx−
∫
6

M(k)uv ds (14)

andR(·) is a linear form defined onL2(Äe
b) by

R(v) =
∫
0

f (k)v dx. (15)

4.2. Characterization of the Derivatives of the Scattered Field with Respect to k

It is well known (for example, see [22] and the references therein) that the solutionu(k)
of the BVP (10) is a meromorphic function ofk ∈ C, with poles in the half-plane=(k) < 0.
Consequently,u(k) can be expanded as a Taylor series with respect tok in the interval
]0,∞[. However, it does not seem possible to derive for the BVP (10) a characterization
of the derivativesun(k) that is similar to the one described in Section 3.2. On the other



420 DJELLOULI, FARHAT, AND TEZAUR

hand, for all classical local absorbing conditions, the functionk→ M(k) is analytic in the
interval ]0,∞[, which implies that the solutionu(k) of the BVP (12) can also be expanded
as a Taylor series with respect tok. Furthermore, it turns out that for the BVP (12), we are
able to characterize the derivatives ofu(k) with respect tok as in Section 3.2, and therefore
to exploit the expansion ofu(k) with respect tok.

For this purpose, we reintroduce the sequence(vn(k))n∈N defined in Eqs. (3) and differ-
entiate the BVP (12) with respect tok. This leads to

−1vn(k)− k2vn(k) = 2kvn−1(k)+ vn−2(k) in Ä

∂vn(k)

∂ν
= 1

n!
f (n)(k) on0 (16)

∂vn(k)

∂ν
− M(k)vn(k) =

n∑
p=1

1

p!
M (p)(k)vn−p(k) on6,

which shows that everyvn(k) is the solution of the variational problem

H(vn(k), v) = Rn(v) ∀v ∈ H1
(
Äe

b

)
, (17)

whereRn(·) is a linear form defined onL2(Äe
b) by

R0(v) =
∫
0

f (k)v dx

Rn(v) =
∫
0

1

n!
f (n)(k)v dx+ 2k

∫
Äe

b

vn−1(k)v dx (18)

+
∫
Äe

b

vn−2(k)v dx+
n∑

p=1

1

p!

∫
6

M (p)(k)vn−p(k)v ds n≥ 1.

From Eqs. (14, 17, 18), it follows that(vn(k))n∈N∗ are the solutions of BVPs that differ only
by their source terms and their boundary conditions, that is, by their right-hand sides after
discretization. This characterization of the derivativesu(n)(k) explains why, in principle, the
methodology outlined in Section 3.2 is also attractive for solving multifrequency acoustic
scattering problems.

4.3. A Bayliss–Turkel-like Absorbing Boundary Condition

In all examples discussed in the remainder of this paper, we adopt the second-order
Bayliss –Turkel-like boundary condition originally developed in [21] for on-the-surface
applications, and recently extended in [23] for finite element applications. However, we
remind the reader that the solution method we propose in this paper works with any non-
reflecting boundary condition of the form∂u(k)

∂ν
− M(k)u(k) = 0, including, for example,

Keller and Givoli’s DtN condition [27].
In two dimensions, the differential operatorM(k) associated with the Bayliss–Turkel-like

absorbing boundary condition is

M(k)v =
(

ik − ζ
2

)
v + ζ 2

8(ζ − ik)
v + ∂

∂s

(
1

2(ζ − ik)

∂v

∂s

)
, (19)
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wheres andζ are the curvilinear abscissae and the curvature on the fictitious boundary6,
respectively. From Eq. (19), it follows that∫

6

M(k)uv ds= ik
∫
6

u · v ds− 1

2

∫
6

ζuv ds+ 1

8

∫
6

ζ 2

(ζ − ik)
uv ds

− 1

2

∫
6

1

(ζ − ik)

∂u

∂s

∂v

∂s
ds. (20)

For the differential operatorM(k) specified in (19), the sequence of derivatives
(M (p)(k))p∈N∗ satisfies∫

6

M (1)(k)uv ds= i
∫
6

uv ds+ 1

8

∫
6

ζ 2 i

(ζ − ik)2
uv ds

− 1

2

∫
6

i

(ζ − ik)2
∂u

∂s

∂v

∂s
ds (21)∫

6

M (p)(k)uv ds= 1

8

∫
6

ζ 2 p!i p

(ζ − ik)p+1
uv ds− 1

2

∫
6

p!i p

(ζ − ik)p+1

∂u

∂s

∂v

∂s
ds p≥ 2.

Hence, the sequence of derivatives(M (p)(k))p∈N∗ generated by the characterization (16) of
the derivativesu(n)(k) incurs simply the construction of basic mass and stiffness matrices
on the fictitious boundary6.

4.4. Applications

Here, our objective is to highlight the potential of the proposed methodology for solving
efficiently multifrequency acoustic scattering problems. For this purpose, we consider two
different two-dimensional problems involving two different scatterers but the same direction

d =
√2

2
√

2
2


of the incident plane wave (see Eq. (11)). In the first problem, the scatterer is a disk of
radiusa. In the second one, it is a submarine-shaped flat object of length 2a (Fig. 2).
For both problems, we design the exterior artificial boundary6 as a circle of radius
R= a + mλ, wherem is a positive number. For each problem, we consider a sequence
of frequency bandsB(k0a) associated with a sequence of increasing focal frequencies
whose corresponding wavenumbers are denoted byk0. For each frequency band, we ap-
ply the solution methodology proposed in this paper to compute the scattered fieldsu(k),
k = k0+1k. Given the results obtained for the waveguide problem discussed in Section
3.3, we use a [10, 10] Pad´e approximant and a (0, 20) or (0, 28) Wynn approximation (scalar
version; see Appendix B) to reconstruct the solution vectorsu(k0+1k).

In all cases, we discretize the computational domain by P1 finite elements, and un-
less otherwise specified, solve the resulting algebraic systems of equations by the FETI-H
iterative method [10] equipped with the multiple right-hand side accelerator described in
[11].

As in Section 3.3, for each wavenumberk such thatka ∈ B(k0a), we also compute a finite
element reference solution using the mesh associated withB(k0a). We assess the accuracy
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FIG. 2. A submarine-shaped scatterer: the computational domain.

of the reference solutions and that of the solutions reconstructed by the Taylor, Pad´e, and
Wynn approximations by evaluating for each one of them a relative error computed as in
Eq. (8), but where theL2-norm onÄ is replaced by theL2-norm on the surface of the
scatterer0.

We perform all computations in double arithmetic precision on a Silicon Graphics Origin
2000 system.

4.4.1. Scattering of time-harmonic waves by a disk.For this problem, an analytical
form of the exact solution can be found in [1]. We consider three different focal frequencies
corresponding tok0a = 1,k0a = 5; andk0a = 31. Fork0a = 1, we set the artificial bound-
ary6 at 0.25λ from the surface of the scatterer(m= 0.25) and discretize the computational
domain intoNmesh= 1, 424 grid points. Fork0a = 5, we set6 at m= 1.27λ and gener-
ate a mesh withNmesh= 34, 931 grid points. Fork0a = 31, we setm= 8λ and generate
a fine mesh with 1, 297, 196 grid points. We note that these meshes have been tailored
to deliver a comparable accuracy for all three focal frequencies considered here. Indeed,
using for each focal frequency its assigned mesh, we obtain three reference solutions for
the three different scattering problems, which exhibit similar relative errors of the order
of 10−3.
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TABLE IV

The Disk Scattering Problem: Accuracy Results —k0a = 1;

hk0 = a/6.3; m = 0.25; Nmesh= 1,424

Taylor 20 Pad´e [10, 10] Wynn (0, 20) Reference

1ka
λ

hk0

ε(k) ε(k) ε(k) ε(k)

0 40.0 0.0053

−0.9 400.0 DIV 0.0369 0.0258 0.0255
−0.75 160.0 DIV 0.0171 0.0169 0.0169
−0.5 80.0 0.0093 0.0092 0.0092 0.0092
−0.25 53.3 0.0036 0.0036 0.0036 0.0036

0.25 32.0 0.0080 0.0080 0.0080 0.0080
0.5 26.7 0.0092 0.0092 0.0092 0.0092
1.0 20.0 DIV 0.0107 0.0107 0.0107
1.5 16.0 DIV 0.0143 0.0143 0.0142
2.0 13.3 DIV 0.0359 0.0212 0.0194
2.5 11.4 DIV 0.1140 0.0446 0.0252

We report in Tables IV–VI the relative errors obtained for the 20-term Taylor series, the
[10, 10] Pad´e approximant, the Wynn approximation of order (0, 20), and the reference
solutions. These results show that

• depending on the wavenumberk0, the Pad´e approximant and Wynn’s algorithm
improve the interval of convergence of the Taylor series by a factor ranging between 3 and 4.
• the Pad´e approximant and Wynn’s algorithm have similar intervals of convergence and

deliver comparable accuracy.

TABLE V

The Disk Scattering Problem: Accuracy Results—k0a = 5; hk0 = a/31.8;

m = 1.27; Nmesh= 34,931

Taylor 20 Pad´e [10,10] Wynn (0,20) Reference

1ka
λ

hk0

ε(k) ε(k) ε(k) ε(k)

0 40.0 0.0017

−3.0 100.0 DIV 0.1421 0.1844 0.0011
−2.5 80.0 DIV 0.0197 0.0169 0.0010
−2.0 66.7 DIV 0.0021 0.0019 0.0015
−1.5 57.1 DIV 0.0022 0.0022 0.0022
−1.0 50.0 0.0869 0.0021 0.0021 0.0021
−0.5 44.4 0.0016 0.0016 0.0016 0.0016

0.5 36.4 0.0028 0.0028 0.0028 0.0028
1.0 33.4 0.0891 0.0036 0.0036 0.0036
1.5 30.8 DIV 0.0039 0.0039 0.0039
2.0 28.6 DIV 0.0043 0.0043 0.0037
2.5 26.7 DIV 0.0086 0.0083 0.0039
3.0 25.0 DIV 0.0310 0.0283 0.0050
3.5 23.5 DIV 0.0785 0.0697 0.0063
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TABLE VI

The Disk Scattering Problem: Accuracy Results—k0a = 31;

hk0 = a/200;m = 8; Nmesh= 1,297,196

Taylor 20 Pad´e [10,10] Wynn (0,20) Reference

1ka
λ

hk0

ε(k) ε(k) ε(k) ε(k)

0 40 0.0028

−4.0 45.8 DIV 0.0980 0.0980 0.0022
−3.5 45.0 DIV 0.0278 0.0249 0.0022
−3.0 44.2 DIV 0.0081 0.0081 0.0023
−2.0 42.7 DIV 0.0026 0.0026 0.0026
−1.0 41.3 0.0031 0.0026 0.0026 0.0026

1.0 38.7 0.0034 0.0031 0.0031 0.0031
2.0 37.6 DIV 0.0032 0.0032 0.0031
3.0 36.5 DIV 0.0118 0.0118 0.0035
3.5 35.9 DIV 0.0278 0.0278 0.0037
4.0 35.4 DIV 0.0732 0.0732 0.0036

• for k0a = 1, k0a = 5, andk0a = 31 the proposed methodology delivers either the
same accuracy as the straightforward approach (reference solutions), or reproduces the
exact solution with less than 3% relative error, in the frequency bandsB(1) = [0.1, 3],
B(5) = [2.5, 8], andB(31) = [27.5, 34.5], respectively.

Besides the cost of solving one Helmholtz problem to computeu(k0), the main computa-
tional cost of the method proposed in this paper for solving multifrequency time-harmonic
wave problems is by far that associated with the characterization of the derivativesu(n)(k).
As established in Section 3.2 and Section 4.2, this characterization requires solving a system
of equations with a number of right-hand sides equal to the number of terms that must be
included in the Pad´e or Wynn algorithms to achieve the desired level of accuracy. Experi-
ence reveals that using a number of terms in the neighborhood of 20 delivers an excellent
accuracy (see Tables I–VI). After this system of equations is solved, the scattered field
can be reconstructed at relatively no computational cost, for any frequencyk = k0+1k,
where|1k| is in the convergence interval of the Pad´e or Wynn algorithms. It follows that
if the system of equations associated with the characterization of the derivativesu(n)(k)
is solved by a direct method, the proposed computational methodology can be expected
to be feasible even for a two-frequency problem, and can also be expected to speed up
the solution time of the straightforward approach (multiple left-hand side problems) by a
factor almost as large as the number of successfully sampled frequencies. However, if the
system of equations associated with the characterization ofu(n)(k) is solved by an itera-
tive method tuned for the solution of systems with multiple right-hand sides, the proposed
computational methodology could be feasible only if the number of successfully sampled
frequencies is larger than a certain threshold that depends on the chosen iterative solver.
This is illustrated in Table VII for the scattering problem considered here, where 21 terms
are included in either the Pad´e or Wynn approximations, and where the system of equa-
tions associated with the characterization of the derivatives is solved by the accelerated
FETI-H method [10, 11]. The performance results reported in Table VII show that in this
case, our computational methodology is feasible when the scattered field is to be computed
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TABLE VII

The Disk Scattering Problem: CPU Performance Results on an Origin 2000 System 21-Term

of a Padé of Wynn Approximation—FETI-H Iterative Solver

k0a = 5 k0a = 31
B(5) = [2.5, 8.0] B(31) = [27.5, 34.5]
Nmesh= 34, 931 Nmesh= 1, 297, 196
10 processors 20 processors

CPU time for 1 frequency 5 seconds 304 seconds
CPU time for more than 2 frequencies 18 seconds 1,742 seconds
Breaking point 4 frequencies 6 frequencies
Speedup factor for a sweep by increments of1ka= 0.5 3.3 2.8

for at least four different frequencies whenk0a = 5, and six different frequencies when
k0a = 31. The speedup factor it delivers depends, among others, on the size of the incre-
ment used in the frequency sweep. For example, for a sweep by increments of1ka= 0.5,
the width of the frequency band for which the Pad´e [10, 10] and Wynn (0, 20) approxima-
tions achieve an excellent accuracy is such that fork0a = 5, our computational methodology
achieves a speedup factor equal to 3.3, and fork0a = 31, it achieves a speedup factor equal
to 2.8.

4.4.2. Scattering of time-harmonic waves by a submarine-shaped flat obstacle.For
this problem, which is graphically depicted in Fig. 2, the exact solution is not available.
Consequently, we assess the accuracy of the Taylor, Pad´e, and Wynn approximations by
comparing the solutions they generate with those of the straightforward approach (multiple
left-hand sides), that is, with the reference solutions. Hence, for this problem, we define the
relative error as

ε̃(k) = ‖u(k)− ũ(k)‖L2(0)

‖ũ(k)‖L2(0)

, (22)

where the tilde notation is used to designate the reference solution.
As for the previous scattering problem, we consider several focal frequencies corre-

sponding tok0a = 2, k0a = 8, k0a = 31, andk0a = 63. In each case, we set the artificial
boundary ata+ λ from the center of the scatterer(m= 1), and generate an unstructured
mesh using 40 elements per focal wavelength as a guideline(λ/hk0 ≈ 40).

For each sampled frequency in the neighborhood of one of the four focal frequencies,
we compute a reference solution, and reconstruct three other solutions using a 20-term
Taylor series, the [10, 10] Pad´e approximant, and the Wynn approximation of order (0,
28). We report on the accuracy of the latter solutions in Tables VIII–XI. We note that

• as in the previous examples, depending on the wavenumberk0, the Pad´e approximant
and Wynn’s algorithm improve the interval of convergence of the Taylor series by a factor
ranging between 3 and 5,
• the Pad´e approximant and Wynn’s algorithm exhibit similar intervals of convergence,

but Wynn’s algorithm reconstructs a slightly more accurate solution, and
• for k0a = 2, k0a = 8, k0a = 31, andk0a = 63 our methodology for performing ef-

ficiently a frequency sweep reproduces the reference solutions with less than 4% relative
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TABLE VIII

The Submarine Scattering Problem: Accuracy

Results—k0a = 2.0; hk0 = a/13; m = 1; Nmesh= 13,810

Taylor 20 Pad´e [10, 10] Wynn (0, 28)

1ka
λ

hk0

ε̃(k) ε̃(k) ε̃(k)

0 40

−1.75 320.00 DIV 0.0497 0.0288
−1.5 160.00 DIV 0.0138 0.0023
−1.0 80.00 0.5318 0.0000 0.0000
−0.5 53.33 0.0000 0.0000 0.0000

0.5 32.00 0.0000 0.0000 0.0000
1.0 26.67 0.2364 0.0000 0.0000
1.5 22.86 DIV 0.0007 0.0000
2.0 20.00 DIV 0.0108 0.0056
2.5 17.78 DIV 0.0556 0.0329

error, in the frequency bandsB(2) = [0.25, 4.5], B(8) = [4.5, 12],B(31) = [26, 36], and
B(63) = [57.5, 68.5], respectively.

We also report in Table XII the CPU performance results obtained using the 29-term Wynn
approximation for two different cases. In the first case, we solve the system of equations
associated with the characterization of the derivatives by the accelerated FETI-H iterative
algorithm [10, 11]. In the second case, we solve it by an optimized direct skyline method

TABLE IX

The Submarine Scattering Problem: Accuracy Results—k0a = 8;

hk0 = a/50; m = 1; Nmesh= 44,090

Tylor 20 Padé [10, 10] Wynn (0, 28)

1ka
λ

hk0

ε̃(k) ε̃(k) ε̃(k)

0 40

−4.0 81.51 DIV 0.1181 0.0864
−3.5 72.14 DIV 0.0417 0.0347
−3.0 64.71 DIV 0.0109 0.0064
−2.5 58.66 DIV 0.0016 0.0008
−2.0 53.64 DIV 0.0000 0.0000
−1.5 49.43 DIV 0.0000 0.0000
−1.0 45.81 0.0037 0.0000 0.0000

1.0 34.46 0.0048 0.0000 0.0000
1.5 33.56 DIV 0.0000 0.0000
2.0 31.86 DIV 0.0000 0.0000
2.5 30.32 DIV 0.0007 0.0002
3.0 28.92 DIV 0.0054 0.0014
3.5 27.65 DIV 0.0214 0.0060
4.0 26.48 DIV 0.0434 0.0187
4.5 25.41 DIV 0.0818 0.0478
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TABLE X

The Submarine Scattering Problem: Accuracy

Results—k0a = 31; hk0 = a/200;m = 1; Nmesh= 239,524

Taylor Padé [10, 10] Wynn (0, 28)

1ka
λ

hk0

ε̃(k) ε̃(k) ε̃(k)

0 40

−6.0 49.44 DIV 0.1391 0.1016
−5.5 48.48 DIV 0.0758 0.0639
−5.0 47.57 DIV 0.0423 0.0310
−4.5 46.68 DIV 0.0198 0.0179
−4.0 45.83 DIV 0.0078 0.0036
−3.0 44.22 DIV 0.0004 0.0001
−2.0 42.71 DIV 0.0000 0.0000
−1.5 42.00 0.0022 0.0000 0.0000
−1.0 41.31 0.0000 0.0000 0.0000

1.0 38.76 0.0000 0.0000 0.0000
1.5 38.17 0.0025 0.0000 0.0000
2.0 37.60 DIV 0.0000 0.0000
3.0 36.51 DIV 0.0002 0.0000
4.0 35.48 DIV 0.0055 0.0036
5.0 34.50 DIV 0.0383 0.0215
5.5 34.04 DIV 0.0719 0.0448
6.0 33.58 DIV 0.1182 0.0853

TABLE XI

The Submarine Scattering Problem: Accuracy

Results—k0a = 63.0; hk0 = a/400;m = 1; Nmesh= 973,288

Taylor 20 Pad´e [10, 10] Wynn (0, 28)

1ka
λ

hk0

ε̃(k) ε̃(k) ε̃(k)

0 40

−6.0 44.09 DIV 0.0972 0.0518
−5.5 43.71 DIV 0.0560 0.0246
−5.0 49.93 DIV 0.0295 0.0106
−4.5 42.96 DIV 0.0142 0.0042
−4.0 42.59 DIV 0.0054 0.0010
−3.0 41.88 DIV 0.0002 0.0000
−2.0 41.20 0.0962 0.0000 0.0000
−1.0 40.53 0.0000 0.0000 0.0000

1.0 39.27 0.0000 0.0000 0.0000
2.0 38.66 1.027 0.0000 0.0000
3.0 38.08 DIV 0.0003 0.0000
4.0 37.51 DIV 0.0098 0.0014
4.5 37.23 DIV 0.0145 0.0048
5.0 36.96 DIV 0.0511 0.0159
5.5 36.70 DIV 0.0592 0.0397
6.0 36.42 DIV 0.1068 0.0687
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TABLE XII

The Submarine Scattering Problem CPU Performance Results on an Origin 2000 System

29-Term Wynn Approximation—FETI-H Solver vs Direct Skyline Solver

k0a = 31 k0a = 63
B(31) = [26, 36] B(63) = [57.5, 68.5]
Nmesh= 239, 524 Nmesh= 973, 288

10 processors 10 processors

CPU time 59 seconds (FETI-H) 405 seconds (FETI-H)
for 1 frequency 235 seconds (direct) 2,606 seconds (direct)
CPU time 420 seconds (FETI-H) 2,771 seconds (FETI-H)
for more than 2 frequencies 558 seconds (direct) 4,846 seconds (direct)
Breaking point 7 frequencies (FETI-H) 7 frequencies (FETI-H)

2 frequencies (direct) 2 frequencies (direct)
Speedup factor for a sweep 3.0 (FETI-H) 3.5 (FETI-H)
by increments of1ka= 0.5 9.2 (direct) 12.9 (direct)

[24] after we have renumbered the equations for optimal storage and arithmetic complexity
by the Reverse Cuthill McKee algorithm [25]. Both the FETI-H and optimized direct skyline
solvers are parallelized on the Origin 2000 system. The obtained CPU performance results
show that for this scattering problem

• when the system of equations associated with the characterization of the derivatives is
solved by the accelerated FETI-H iterative algorithm [10, 11], the proposed computational
method is feasible when at least seven frequencies are sampled in eitherB(31) or B(63).
On the other hand, when this system of equations is solved by an optimized direct skyline
method, it is feasible as soon as two frequencies are sampled in eitherB(31) orB(63);
• for frequency sweeps by increments of1ka= 0.5, our method equipped with the

accelerated FETI-H solver [10, 11] achieves a speedup factor equal to 3.0 when sweeping
in B(31), and a speedup factor equal to 3.5 when sweeping inB(63). When equipped with
a direct skyline solver, these speedup factors increase to 9.2 and 12.9, respectively; and
• nevertheless, our computational method is several times faster when equipped with the

FETI-H solver (and perhaps any other fast iterative solver) than with an optimized direct
skyline solver.

5. THE PADÉ APPROXIMANTS VS WYNN’S ALGORITHM

Finally, we report in this section on our experience with the Pad´e and Wynn approximation
methods. Computing a Pad´e approximant requires inverting for each point on0 anM × M
matrix C—in our case, typically a 10× 10 matrix—after which the reconstruction of the
sought-after solutions for all frequencies in the interval of convergence of this method incurs
only evaluations of rational functions. ForM > 10,C becomes so ill-conditioned that the
evaluation of the Pad´e approximant becomes very difficult.

On the other hand, for each frequency in the interval of convergence, Wynn’s algo-
rithm requires recomputing the partial Taylor sums and reperforming the epsilon algorithm.
Hence, when the number of target frequencies is large, Wynn’s algorithm becomes more
computationally expensive than Pad´e’s method.
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The scalar implementation of Wynn’s approximation of order (0, 2L) is in theory equiv-
alent to the [L , L] Padé approximat. ForL ≤ 10, both approximations deliver comparable
accuracy. ForL > 10, often only Wynn’s algorithm is sufficiently stable.

6. CONCLUSION

By characterizing the derivatives of the scattered field with respect to the frequency as
the solutions of scattering-type problems with different source terms and boundary con-
ditions, we have shown that multifrequency acoustic scattering problems can be solved
at the computational cost of the solution of a single system of equations with multiple
right-hand sides. The size of this system of equations is the same as that of the system of
equations arising from the discretization of the exterior Helmholtz problem for any given
frequency. The number of right-hand sides is equal to the number of terms required by
a Padé- or Wynn-type algorithm for reconstructing accurately the scattered field for the
wavenumberk+ δk, knowing its value and the values of its derivatives for the wavenum-
berk. This characterization holds when the acoustic scattering problem is formulated in a
bounded domain, using an absorbing boundary condition. It also holds when the artificial
boundary is replaced by a finite thickness layer designed to damp all the waves entering it
from the side of the scatterer, as in the perfectly matched layer technique of Berenger [26].
The results obtained for the solution via this characterization of various multifrequency
guided wave and acoustic scattering problems for 1≤ ka≤ 63 suggest that the required
number of Pad´e or Wynn terms is around 20. They also suggest that the interval of con-
vergence of the proposed solution methodology is of the order ofka± 5. Sweeping on
ka in such intervals by increments1ka= 0.5 typically results in a speedup factor equal
to 3 when an iterative method is used for solving the system of equations with multiple
right-hand sides, and a speedup factor of 10 when solving this system by a direct method.
Using smaller increments increases these speedup factors, and using larger ones decreases
them.

APPENDIX A: THE PAD É APPROXIMANTS [18]

Suppose that a given functionf (z) can be expanded in power series as

f (z) =
∞∑

i=0

ci z
i . (23)

A Padé approximant off (z), denoted by [L ,M ], is

[L ,M ] = a0+ a1z+ · · · + aL−1zL−1+ aL zL

b0+ b1z+ · · · + bM−1zM−1+ bM zM
, (24)

where

b0 = 1. (25)
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The remainderbi coefficients are the solution of the following linear algebraic system of
equations

cL−M+1 cL−M+2 cL−M+3 . . . cL

cL−M+2 cL−M+3 cL−M+4 . . . cL+1

cL−M+3 cL−M+4 cL−M+5 . . . cL+2

· · · ·
· · · ·
· · · ·

cL cL+1 cL+2 . . . cL+M−1





bM

bM−1

bM−2

·
·
·

b1


= −



cL+1

cL+2

cL+3

·
·
·

cL+M


, (26)

and theai coefficients are given by

a0 = c0

a1 = c1+ b1c0

a2 = c2+ b1c1+ b2c0

·
·
·

a2 = c2+
min(L ,M)∑

i=0

bi cL−i .

(27)

Hence, computing the Pad´e approximant [L ,M ] requires the knowledge of the first
L + M + 1 coefficients of the power series (24). This approximant agrees with the trunca-
tion of the power series (24) to orderL + M + 1.

APPENDIX B: WYNN’S ALGORITHM [19, 20]

The approximation by Wynn’s algorithm of the functionf defined by its power series
(24) consists of constructing a recursive sequence with double entries(En

p) as

En
−1 = 0; n = 0, 1, 2 . . .

En
0 = Sn; n = 0, 1, 2 . . . (28)

En
p+1 = En+1

p−1 +
1

En+1
p − En

p

; n, p = 0, 1, 2 . . . ,

whereSn denotes the partial sum of ordern, that is,

Sn =
n∑

i=0

ci z
i . (29)

Hence, the Wynn algorithm is a recursive procedure that avoids the inversion of any linear
system. Similar to the case of the Pad´e approximants, the construction ofEn

p requires the
knowledge of the firstn+ p+ 1 coefficients of the power series (24). Whenf is a vector
valued function(ci ∈ CN), the vector version of this procedure consists of replacing in (28)
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the term 1
En+1

p − En
p

by (En+1
p − En

p)
−1, wherey−1 denotes the inverse of the vectory in CN

y−1 = ȳ∑N
i=0 yi ȳi

, (30)

and the bar notation is used here to denote a complex conjugate.
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